EFFECTS OF SELENIUM TOXICITY AND DEFICIENCY ON HUMANS

0
884

CHAPTER ONE

INTRODUCTION

1.1.          BACKGROUND INFORMATION

Selenium (Se) is an essential trace element having biological functions of utmost importance for human health. Different from the other (semi) metals, it is incorporated into proteins by a co-translational mechanism as part of the amino acid selenocysteine (SeCys), the 21st amino acid used for protein synthesis in humans, whereas only a few of them have been functionally characterized. Most Se-proteins participate in antioxidant defence and redox state regulation, particularly the families of more specific essential roles, such as iodothyronine deiodinases (DIOs) which are involved in thyroid hormones metabolism, GPx4 which is essential for spermatogenesis, and selenophospathe synthetases 2 (SPS2) participating in Se-protein biosynthesis.

Other Se-proteins may be involved in important biological processes, but their exact mechanism of action is still yet to be fully understood. Despite the scarce knowledge of the precise biochemical functions, a very large number of studies have been carried out in the last two decades showing that insufficient Se levels, and particularly Se-proteins, are associated with several human diseases including cancer, diabetes, cardiovascular and immune system disorders. In most cases, the link lies in the contrast to the oxidative stress that may be booth causing or caused by the disease. In this context, it is important to decipher whether and adequate Se status may contrast the risk factors for health disorders, or Se supplementation may improve the therapy when Se metabolism is altered.

Despite many studies that have suggested a beneficial effect from Se supplementation to general health protection, most of them have remarked that it is limited to general health protection, most of them have remarked that it is limited to the initially inadequate Se status. Conversely, care should be taken when using supplements because excessive Se intake leads to toxic effects, and recent studies have shown that even sub-toxic doses may be negatively impacting, for example by increasing the risk of type 2 diabetes.

EFFECTS OF SELENIUM TOXICITY AND DEFICIENCY ON HUMANS