A COMPARATIVE ENTHALPY APPROACH FOR CO- AND COUNTER CURRENT FLOW IN CONCENTRIC TUBE HEAT EXCHANGER

0
1018

A COMPARATIVE ENTHALPY APPROACH FOR CO- AND COUNTER CURRENT FLOW IN CONCENTRIC TUBE HEAT EXCHANGER

 

ABSTRACT

According to the modern or dynamical Theory of heat: Heat a form of energy. The molecules of a substance are in parallel motion. The mean Kinetic energy per molecules of the substance is proportional to its absolute temperature. In description of heat, a molecule may consist of one or two or many atom depending upon the nature of the gas. The force of attraction between the molecules of a perfect gas is negligible. The atom in a molecules vibrate with respect to one another, consequently a molecules has vibration energy. The whole molecules may rotate about one or more axes, so it can have “notational energy”. A molecule has “translational energy” due to its motion, thus kinetic energy of a molecule is “the sum of its translational, rotational and vibrational energies. Summarily heat energy given to a substance e is used in increasing its internal energy. Increase in internal energy cause increase in Kinetic energy or potential energy or increase in both the energies. Due to increase in Kinetic energy of a molecules, its translational, vibrational or rotational energy may increase. In a nut shell “heat transfer is the science which deal with the rate of bodies called the Source aims receiver KERN, [2006:1]

CHAPTER ONE

1.O INTRODUCTION

BACKGROUND OF THE STUDY

According to the modern or dynamical Theory of heat: Heat a form of energy. The molecules of a substance are in parallel motion. The mean Kinetic energy per molecules of the substance is proportional to its absolute temperature. In description of heat, a molecule may consist of one or two or many atom depending upon the nature of the gas. The force of attraction between the molecules of a perfect gas is negligible. The atom in a molecules vibrate with respect to one another, consequently a molecules has vibration energy. The whole molecules may rotate about one or more axes, so it can have “notational energy”. A molecule has “translational energy” due to its motion, thus kinetic energy of a molecule is “the sum of its translational, rotational and vibrational energies. Summarily heat energy given to a substance e is used in increasing its internal energy. Increase in internal energy cause increase in Kinetic energy or potential energy or increase in both the energies. Due to increase in Kinetic energy of a molecules, its translational, vibrational or rotational energy may increase. In a nut shell “heat transfer is the science which deal with the rate of bodies called the Source aims receiver KERN, [2006:1]

MECHANISM OF HEAT

Heat transfer is of three distinct way in which heat may pass from a source to a receiver, although most engineering application are combination of two or three method, which are conduction convection and radiation

Conduction: Conduction heat Transfer is energy transport due to molecular motion and interaction. Conduction heat transfer through solids is due to molecular vibration. Fourier determined that Q/A, the heat transfer per unit area (W/m2) is proportional to the temperature gradient ∂t/∂x. The constant of proportionality is called the material thermal conductivity K. Fourier equation according to Colostate [2014:4] Q/A = -K ∂t/∂x …(1-1) The thermal conductivity K depends on the material and also some what on the temperature of the materials.

Convection: Convection heat transfer is energy transfer due to bulk fluid motion. Convection heat transfer through gases and liquids form a solid boundary results from the fluid motion along the surface.

 

DOWNLOAD COMPLETE PROJECT MATERIAL

A COMPARATIVE ENTHALPY APPROACH FOR CO- AND COUNTER CURRENT FLOW IN CONCENTRIC TUBE HEAT EXCHANGER

Leave a Reply