OPTIMIZATION OF BIODIESEL PRODUCTION FROM YELLOW OLEANDER AND CASTOR OILS AND STUDIES OF THEIR FUEL PROPERTIES

0
773

OPTIMIZATION OF BIODIESEL PRODUCTION FROM YELLOW OLEANDER AND CASTOR OILS AND STUDIES OF THEIR FUEL PROPERTIES

 

Abstract

The optimization of biodiesel production from two non-edible oils and studies of their fuel and biodegradability properties was carried out. The two oil feedstocks (Yellow oleander and Castor oils) were extracted from their seeds using an oil expeller and their physicochemical properties such as iodine value, moisture content, saponification value, acid value, viscosity, specific gravity and refractive index were determined. Most of these properties were within the acceptable limit of American Standard Testing Method (ASTM). The methyl esters were optimized using methanol as solvent and by varying conditions like reaction temperature, reaction time, type and concentration of catalyst, molar ratio of methanol and oil. For maximum biodiesel production, the transesterification reaction showed that the concentration of alkali catalyst was 0.8 % sodium hydroxide, 0.33 %v/v alcohol/oil ratio, 1 hr reaction time, 60 0C temperature and excess alcohol 150 %v/v. Optimized parameters for production of biodiesel through base catalyzed transesterification gave maximum yield of 96 % and 98 % for yellow oleander and castor oil respectively. The Yellow Oleander Methyl Ester (YOME) and Castor Oil Methyl Ester (COME) and their diesel blends were comparatively analysed for fuel properties such as flash point, relative density, kinematic viscosity, calorific value, distillation, sulphur, phosphorous, water content, cetane number and acid number . The methyl ester of yellow oleander was found to have properties closer to ASTM D 6751 fuel specifications than that of castor oil. It is further observed from the results that the biodiesel from yellow oleander and castor oil are environmentally friendly, such that after spillage, it will take about 28 days for them to have biodegradability of 82.4 and 87.3 for YOME and COME respectively. This is an advantage over petro-diesel which was found to have biodegradability of 25.29 in 28 days.

TABLE OF CONTENTS

Title
Abstract
Table of Contents
List of Abbreviations and Symbols

CHAPTER ONE
1.0 INTRODUCTION
1.1 Statement of Research Problem
1.2 Justification for Research
1.3 Aims and Objectives

CHAPTER TWO

2.0 LITERATURE REVIEW
2.1 Biodiesel as an Alternative to Petroleum Diesel
2.2 Performance Characteristics of Biodiesel
2.3 Biodiesel Storage Stability
2.4 Biodiesel Production
2.5 Optimization of Transesterification Process
2.5.1 Catalyst type and concentration
2.5.2 Effect of free fatty acid and moisture
2.5.3 Effect of reaction time and temperature
2.5.4 Mixing intensity
2.5.5 Molar ratio of alcohol to oil and type of alcohol
2.5.6 Effect of using organic solvents
2.6 Transesterification under different Conditions
2.7 Biodiesel Properties
2.7.1 Flash point
2.7.2 Viscosity
2.7.3 Cloud and pour point
2.7.4 Specific gravity
2.7.5 Calorific value
2.7.6 Sulphur
2.7.7 Cetane number
2.7.8 Carbon residue

CHAPTER THREE
3.0 MATERIALS AND METHODS
3.1 Samples
3.2 Preparation of Solutions
3.2.1 Preparation of 1% v/v phosphoric acid solution
3.2.2 Preparation of 1 M sodium hydroxide solution
3.2.3 Preparation of 1M sulphuric acid solution
3.2.4 Preparation of 0.1M potassium hydroxide solution
3.2.5 Preparation of 0.8 % w/w sodium hydroxide solution
3.2.6 Preparation of 10 % potassium iodide solution
3.2.7 Preparation of 0.1N sodium thiosulphate solution
3.2.8 Preparation of 0.1M hydrochloric acid solution
3.3 Sample Collection and preparation
3.4 Extraction
3.5 Refining Process
3.5.1 De-waxing
3.5.2 Degumming
3.5.3 Neutralizing
3.6 Determination of Acid Value of the Oils
3.7 Determination of Percentage Free Fatty Acid Content
3.8 Transesterification
3.8.1 Acid esterification (Step I)
3.8.2 Alkaline transesterification (Step II)
3.9 Test Methods for Physico-Chemical Properties
3.9.1 Kinematic viscosity
3.9.2 Density/API gravity measurement
3.9.3 Acid value
3.9.4 Iodine value
3.9.5 Peroxide value
3.9.6 Pour point
3.9.7 Cloud point
3.9.8 Sulphur content
3.9.9 Water content
3.9.10 Saponification value
3.9.11 Refractive index
3.9.12 Free and total glycerin
3.9.13 Flash point
3.9.14 Distillation characteristics
3.9.15 Cetane index
3.10 Biodegradation Study of the Biodiesels

3.11Fuel Blends Preparation

CHAPTER FOUR
4.0 RESULTS

4.1 Result of Phytochemical Properties
4.2 Result of
4.2.1 Result of acid esterification 4.2.2 Result of transesterification (Step II)
4.3 Result of Characterization of Biodiesel Produced
4.4 Effect of Blending on fuel properties of the Biodiesels
4.5 Result of Distillation of Yellow Oleander and Castor oil methyl esters
4.6 Result of Biodegradability studies of Biodiesel

CHAPTER FIVE
5.0 DISCUSSION OF RESULTS
5.1 Percentage oil yield
5.2. Physicochemical Properties of Yellow oleander and Castor oil
5.3 Process Optimization
5.3.1 Acid esterification (Step I)
5.3.2 Transesterification (Step II)
5.4 Characterization of Biodiesel produced
5.5 Effect of Blending on Fuel properties of the Biodiesels
5.6 Distillation Characteristic of the Biodiesels produced

CHAPTER SIX, CONCLUSION AND RECOMMENDATIONS
6.1 Summary
6.2 Conclusion
6.3 Recommendations
REFERENCES
APPENDICES

List of Abbreviations and Symbols

AOAC American Oil Association of Chemist
AOCS American Oil Chemist’s Society
ASTM American Standard Testing materials
B2 2% Biodiesel and 98% Diesel
B5 5% Biodiesel and 95% Diesel
B7 7% Biodiesel and 93% Diesel
B10 10% Biodiesel and 90% Diesel
B20 20% Biodiesel and 80% Diesel
B40 40% Biodiesel and 60% Diesel
B60 60% Biodiesel and 40% Diesel
B80 80% Biodiesel and 20% Diesel
B100 100% Biodiesel and 0% Diesel
CI Compression Ignition
COME Castor Oil Methyl Ester
CO Carbon monoxide
CSO Castor Seed Oil

FAME Fatty Acid Methyl Ester

FFA Free Fatty Acid

GC-MS Gas Chromatography Mass spectroscopy

HC Hydrocarbon

ISO International Standard Organization

NAOME Sodium methoxide

OPEC Organization of Petroleum Exporting Countries

PAHs Poly Aromatic hydrocarbons

PM Particulate Matter

TAN Total Acid Number

VOs Vegetable Oils

YOME Yellow Oleander Methyl Ester

YOSO Yellow Oleander Seed Oil

CHAPTER ONE

1.0 INTRODUCTION

The world energy sector depends on the petroleum, coal and natural gas reservoirs to fulfill its energy requirements (Meher et al., 2006). Nigeria is traditionally an energy-deficient country which exports above 70% of its crude oil production. The country is dependent upon import of petroleum products to sustain its growth. Diesel fuel plays an essential function in the industrial economy of Nigeria. The fuel is used in heavy trucks, city transport buses, electric generators, farm equipment etc. (Anjana, 2000). However, diesel engine also emits various forms of pollutants into the environment which can endanger human health and damage the ecological environment (Antolin et a.l, 2002). It is therefore essential that the world extend its interest towards new sources of energy. A relatively new alternative that is currently booming worldwide is fuel obtained from renewable resources or biofuel. Biofuels are well suited for decentralized development i.e can be utilised to meet the needs for social and economic progress, especially in rural communities where fossil fuels may be difficult or expensive to obtain (Nwafor and Nwafor, 2000; Ezeanyananso et al., 2010).

Amongst the various alternative fuels which could match the combustion features of diesel oil and can be easily adapted for use in existing engine technologies with or without any major modifications is biodiesel. Biodiesel fuel produced from vegetable oils (both edible and non edible) or animal fats is one of the promising possible sources that can be substituted for conventional diesel fuel and produces favourable effects on the environment. Biodiesel is recommended for use as a substitute for petroleum diesel mainly because it is a renewable, domestic resource with an environmentally friendly emission profile and is readily available and biodegradable (Zhang et al., 2003).

 

DOWNLOAD COMPLETE PROJECT MATERIAL

OPTIMIZATION OF BIODIESEL PRODUCTION FROM YELLOW OLEANDER AND CASTOR OILS AND STUDIES OF THEIR FUEL PROPERTIES

Leave a Reply