Priorities Needed for Nano-Risk Research and Development

0
303

A broad array of nanotechnology experts agree that the United States needs to spend more money on understanding potential health and environmental dangers of exposure to materials engineered on the scale of a few clumps of atoms. But just how that research should be prioritized and organized is a topic of increasingly fierce debate. The potential adverse impacts of nanotechnology sprang to the fore again at a sometimescontentious hearing of the U.S. House Science Committee on 21 September. At the hearing, leaders of the Nanotechnology Environmental and Health Implications (NEHI) working group—an interagency panel that coordinates federal funding on health and environmental risks of nanotechnology—released a longoverdue report outlining research needed to buttress regulation of products in the field. But critics both inside and outside Congress blasted the report as a jumbled wish list. “The government needs to establish a clear, prioritized research agenda and fund it adequately. We still haven’t done that, and time is a-wasting,” says committee chair Sherwood Boehlert (R–NY). There is certainly plenty riding on how nanotechnology is regulated. More than 200 nanotechnology products are already on the market, including sunscreens and cosmetics, lightweight bicycle frames, and car wax, and they accounted for more than $32 billion in sales last year. A recent market survey by Lux Research, a nanotechnology research and advisory firm in New York City, predicts that by 2014, a whopping $2.6 trillion worth of manufactured goods will incorporate nanotechnology. “The nanotechnology industry, which has enormous economic potential, will be stymied if the risks of nanotechnology are not clearly addressed and understood,” Boehlert says. That is already happening, says Lux Research Vice President Matthew Nordan. At the hearing, Nordan said that Lux has learned through its private consulting work that some Fortune 500 companies are already backing out of nanotechnology research because of real and perceived risks of nanomaterials and uncertainties over how they would be regulated. Venture-capital funders and insurers have also pulled their services for some clients for the same reason, Nordan says, although he didn’t offer specifics. To stem this tide, Nordan and other experts argue that nanotoxicology research funding should be increased dramatically. According to figures from the U.S. National Nanotechnology Initiative, federal agencies currently spend a combined $38.5 million annually on environmental, health, and safety research on nanotechnology. Last year, however, researchers at the Woodrow Wi l son International Center for Scholars’ Project on Emerging Nanotechnologies in Washington, D.C., concluded that only $11 million went to “highly relevant” research focused on understanding and dealing with the risks of nanomaterials (see table). At a congressional hearing last year, nongovernmental experts called for raising funds for such studies to between $50 million and $100 million a year (Science, 9 December 2005, p. 1609). Both the NEHI report and another report released on 25 September by the National Research Council echoed calls for expanding research in the field. But there is far less agreement on how that money should be spent and coordinated. “Nanotech [environmental health and safety] research in government agencies, academic institutions, and industry is being performed in an ad hoc fashion according to individual priorities,” Nordan says. That scattershot approach has left broad gaps between what the agencies are pursuing and what is needed to tune regulations to products already on the market, argues Andrew Maynard, chief scientist of the Wilson Center’s Project on Emerging Nanotechnologies. For example, Maynard says, carbon-based nanomaterials are incorporated into only about one-third of nanotech products. Yet the vast majority of nanotoxicology studies focus on those materials, while ignoring broad classes of other materials already on the market.