Tuning the strain-induced resonance shift in silicon racetrack resonators by their orientation

0
492

In this work, we analyze the role of strain on a set of silicon racetrack resonators presenting different orientations with respect to the applied strain. The strain induces a variation of the resonance wavelength, caused by the photoelastic variation of the material refractive index as well as by the mechanical deformation of the device. In particular, the mechanical deformation alters both the resonator perimeter and the waveguide cross-section. Finite element simulations taking into account all these effects are presented, providing good agreement with experimental results. By studying the role of the resonator orientation we identify interesting features, such as the tuning of the resonance shift from negative to positive values and the possibility of realizing strain insensitive devices. © 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement OCIS codes: (130.0130) Integrated optics; (130.3060) Infrared; (130.3120) Integrated optics devices; (130.6010) Sensors; (130.6622) Subsystem integration and techniques; (250.5300) Photonic integrated circuits. References and links 1. K. Harris, A. Elias, and H.-J. Chung, “Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies,” Journal of materials science 51, 2771–2805 (2016). 2. B. Wang, S. Bao, S. Vinnikova, P. Ghanta, and S. Wang, “Buckling analysis in stretchable electronics,” npj Flexible Electronics 1, 5 (2017). 3. C.-H. Chou, J.-K. Chuang, and F.-C. Chen, “High-performance flexible waveguiding photovoltaics,” Scientific reports 3, 2244 (2013). 4. T. Yokota, P. Zalar, M. Kaltenbrunner, H. Jinno, N. Matsuhisa, H. Kitanosako, Y. Tachibana, W. Yukita, M. Koizumi, and T. Someya, “Ultraflexible organic photonic skin,” Science advances 2, e1501856 (2016). 5. J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet,” Optical Materials Express 3, 1313–1331 (2013). 6. L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nature Photonics 8, 643–649 (2014). 7. Y. Chen, H. Li, and M. Li, “Flexible and tunable silicon photonic circuits on plastic substrates,” Scientific reports 2, 622 (2012). 8. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” Journal of Optics 18, 073003 (2016). Vol. 26, No. 4 | 19 Feb 2018 | OPTICS EXPRESS 4204 #313440 https://doi.org/10.1364/OE.26.004204 Journal © 2018 Received 21 Nov 2017; revised 23 Dec 2017; accepted 24 Dec 2017; published 8 Feb 2018 9. F. Testa, C. J. Oton, C. Kopp, J.-M. Lee, R. Ortuño, R. Enne, S. Tondini, G. Chiaretti, A. Bianchi, P. Pintus, M.-S. Kim, D. Fowler, J. Á. Ayucar, M. Hofbauer, M. Mancinelli, M. Fournier, G. B. Preve, N. Zecevic, C. L. Manganelli, C. Castellan, G. Parés, O. Lemonnier, F. Gambini, P. Labeye, M. Romagnoli, L. Pavesi, H. Zimmermann, F. D. Pasquale, and S. Stracca, “Design and implementation of an integrated reconfigurable silicon photonics switch matrix in iris project,” 22, 155–168 (2016). 10. W. J. Westerveld, S. M. Leinders, P. M. Muilwijk, J. Pozo, T. C.