DESIGN AND CONSTRUCTION OF A 1KVA MOBILE SOLAR GENERATOR 

0
996

CHAPTER ONE

INTRODUCTION

1.1       Background of study

A power inverter, or inverter, is an electronic device or circuitry that changes direct current (DC) to alternating current (AC). (The Authoritative, 2000). The input voltage, output voltage and frequency, and overall power handling depend on the design of the specific device or circuitry. The inverter does not produce any power; the power is provided by the DC source. A power inverter can be entirely electronic or may be a combination of mechanical effects (such as a rotary apparatus) and electronic circuitry. Static inverters do not use moving parts in the conversion process. (Power Inverter, 2014)

A solar inverter, or PV inverter, converts the variable direct current (DC) output of a photovoltaic (PV) solar panel into a utility frequency alternating current (AC) that can be fed into a commercial electrical grid or used by a local, off-grid electrical network. It is a critical balance of system (BOS) –component in a photovoltaic system, allowing the use of ordinary AC-powered equipment. Solar inverters have special functions adapted for use with photovoltaic arrays, including maximum power point tracking and anti-islanding protection. (Solar Inverter, 2014).

The solar inverter is a critical component in a solar energy system. It performs the conversion of the variable DC output of the Photovoltaic (PV) module(s) into a clean sinusoidal 50 or 60 Hz AC current that is then applied directly to the commercial electrical grid or to a local, off-grid electrical network. A solar cell (also called photovoltaiccell) is the smallest solid-state device that converts the energy of sunlight directly into electricity through the photovoltaic effect. A Photovoltaic (PV) module is an assembly of cells in series or parallel to enlarge or increase voltage and/or current. A Panel is an assembly of modules on a structure. An Array is an assembly of panels at a site. Typically, communications capability is included so users can monitor the inverter and report on power and operating conditions, provide firmware updates and control the inverter grid connection.At the heart of the inverter is a real-time microcontroller.

The controller executes the very precise algorithms required to invert the DC voltage generated by the solar module into AC. This controller is programmed to perform the control loops necessary for all the power management functions necessary including DC/DC and DC/AC. The controller also maximizes the power output from the PV through complex algorithms called maximum power point tracking (MPPT). The PV maximum output power is dependent on the operating conditions and varies from moment to moment due to temperature, shading, soilage, cloud cover, and time of day so adjusting for this maximum power point is a continuous process.
DOWNLOAD COMPLETE PROJECT MATERIALS

DESIGN AND CONSTRUCTION OF A 1KVA MOBILE SOLAR GENERATOR