MODELLING AND OPTIMIZATION OF A HYBRID ENERGY SYSTEM FOR GSM BASE TRANSCEIVER STATION SITES IN EMERGING CITIES

0
481

ABSTRACT

This study presents the modelling and optimization of a Hybrid Energy System (HES) for GSM Base Transceiver Station (BTS) sites in emerging cities. The aim is to ensure reliable and cost-effective power supply, considering the availability, dynamism and viability of energy sources.

Theoretical approach is applied in the modelling, simulation and validation of the developed HES, which consists of the utility grid, wind and solar photovoltaic (PV) as primary energy sources incorporating a super-capacitor/battery storage and power conversion unit. The complexity in optimizing continuous variables of the HES informed the use of a hybrid Genetic Algorithm and Pattern Search (h-GAPS) technique. The optimization problem is treated as a single objective function by considering all objectives in terms of cost while constraining the HES to satisfy the load demand safely according to the reliability criteria defined by the energy management strategy. The h-GAPS based optimization model simulated for the peripheral node GSM BTS sites in Abuja, Benin City, Enugu, Ikeja, Maiduguri and Sokoto utilized long-term (22-years) meteorological data sets collected from the Nigerian Meteorological agency and the National Aeronautics and Space Administration. The performance index of various developed and existing energy systems is evaluated based on economy or Cost of Energy (COE), power system reliability, energy throughput, and emission reduction targets.

Simulation results showed that Sokoto is the most favourable site for utilizing the proposed HES. Abuja and Benin City are the least favourable locations for utilizing the grid-connected (Grid/PV/Wind) and the off-grid (PV/Wind) configurations respectively. The optimum size

of grid-connected HES consisting of 2 kW wind turbine, 7.09 m2 PV array inclined at 150,

0.053 kWh super-capacitor and 10.8 kWh (48V, 225Ah) battery banks, and 1,484.60 kWh of energy drawn from the grid per annum enabled reliable (negligible power loss) and cost- effective energy supply in Sokoto. The off-grid configuration reduced the COE by 72.81% (N24.75 to N6.73 per kWh) but with larger PV array size (12.68 m2) and reliability of 99.02%. In comparison with current practice of using grid/diesel systems, the proposed off- grid configuration has the best performance index, with an average energy throughput of

0.076 kWh per naira, in Nigeria. A reliable and cost effective energy option will not only reduce the per-unit cost of mobile services in Nigeria, but also reduce the greenhouse gas emission level from GSM BTS sites by an average of 98.34% thereby making the environment much more friendly and safe. This research would be useful for mobile service providers, consultants, regulatory agencies, policy makers, and the society.

TABLE OF CONTENTS

TITLE PAGE                                                                                                                              i

CERTIFICATION                                                                                                                     ii

CERTIFICATION OF THESIS ON PLAGIARISM                                                              iii

DEDICATION                                                                                                                          iv

ACKNOWLEDGEMENTS                                                                                                       v

ABSTRACT                                                                                                                              vi

LIST OF FIGURES                                                                                                                xiii

LIST OF TABLES                                                                                                                 xvii

NOMENCLATURES                                                                                                              xx

CHAPTER ONE: GENERAL INTRODUCTION                                                                   1

CHAPTER TWO: LITERATURE REVIEW                                                                          15

2.7.1Sokoto101
2.7.2Maiduguri102
2.7.3Abuja102
2.7.4Ikeja103
2.7.5Enugu103
2.7.6Benin City104
  • Summary                                                                                                            104

CHAPTER THREE: METHODOLOGY                                                                              108

  • Development of the Hybrid Energy System Model                                                   108
    • Modelling of the Hybrid Energy System Components                                               111
      • Modelling of the Grid Energy Supply System (GESS)                                                         111
      • Modelling of the Wind Energy Conversion System                                                              114
  • Modelling of the Photovoltaic Conversion System                                                               118
    • Modelling of the Power Electronics (Conversion Unit)                                                        123
    • Modelling of the Energy Storage Unit                                                                                  124
    • Energy Management Strategy                                                                                     129
      • Control Design       129
      • Operation Strategy 132
      • System Energy Characteristics                                                                                              134
      • System Reliability Considerations                                                                                         136
    • System Techno-Economic Analysis                                                                            137
      • Basic Considerations                                                                                                             138
      • Economic Analysis 140
      • Technical Analysis  146
      • Total Cost Analysis                                                                                                               147
      • Techno-Economic Viability                                                                                                   148
    • Environmental Impact Assessment                                                                             148
    • Estimation of Energy Consumption of GSM BTS Site                                              150
    • Data Collection and Analysis                                                                                     151
      • Load Data              151
      • Wind Turbine Characteristic Curve                                                                                       152
      • Meteorological Data                                                                                                              152
    • Model Performance Evaluation                                                                                  155
      • Evaluation of various Global Solar Radiation Models for Nigeria                                       155
      • Evaluation of various Diffuse Solar Radiation Models for Nigeria                                      158
      • Determination of the Optimum Tilt Angle of a PV Array Oriented

Due South in Nigeria                                                                             159

3.8.4 Calibration and Validation of the Proposed Wind Energy     Conversion System Model 160 Optimization Procedure                                                                                        161   3.9.1       Formulation of the Optimization Problem   161 3.9.2       Optimization of the Proposed Hybrid Energy System 163 Design of Simulation Model                                                                                 168   3.10.1   Case Studies: Process Simulation and Application   169    

3.9

  • 3.10

CHAPTER FOUR: RESULTS, DISCUSSION AND FINDINGS                                      173

GSM BTS Sites                                                                                                     211

 4.4.1Comparison of Proposed Energy System and Existing Energy Systems  214
4.4.2System Environmental Impact227
4.4.3Land Requirement for Implementing the Proposed Hybrid Energy System for GSM BTS Sites    229
4.5Findings 230

4.6      Contributions to Knowledge                                                                                234

CHAPTER FIVE: CONCLUSION AND RECOMMENDATIONS                                  235

    • Further Research 238

LIST OF RESEARCH PUBLICATIONS                                                                            240

REFERENCES                                                                                                                       242

APPENDICES                                                                                                                       280

Appendix A: Main Technical Specifications of Hybrid Energy System Components       280

Appendix B: Meteorological and Load Data                                                                     285

Appendix C: MATLAB Script for Model Calibration and Validation                              297

Appendix D: MATLAB Script for Determining the Optimum Tilt Angles of PV Array 305 Appendix E: MATLAB Main Scripts for Optimization and Operation Control of Proposed

Hybrid Energy System                                                                                  305

LIST OF FIGURES

Figure 1.1: Trends of subscribers‘ base and teledensity in the period (2001 – September 2014) in Nigeria (NCC, 2014).                                                                                                          2

Figure 1.2: Market shares of GSM network operators as in September 2014 in Nigeria   (NCC, 2014).  2

Figure 2.1: Funding of  the  Nigerian  power  sector  in  the  last  three  decades (Tallapragada, 2009; Erik, 2011)                                                                                                            19

Figure 2.2: Trends of the Nigerian  population  within  the  last  three  decades  (1980  – 2011) 20

Figure 2.3: Average duration of power access and outage of the Nigerian grid electricity system (UNDP-GEF, 2013)                                                                                                           23

Figure 2.4: Average duration of power access per day of the  Nigerian  grid  electricity system (UNDP-GEF, 2013)                                                                                                           23

Figure 2.5: Variation of cost of grid-supplied electricity to a typical GSM BTS site for different locations across Nigeria.                                                                                                      28

Figure 2.6: Share of different anthropogenic GHG emissions, in total emissions in 2004, expressed in terms of CO2-eq (IPCC, 2007).                                                                              29

Figure 2.7: Comparison of the cubic law  fitted  WTG  characteristics  and  that  of  the typical WTG supplied by the manufacturer for Hummer H3.1-1kW WTG (AHDC, 2013)     44

Figure 2.8: Effect of varying altitude on air density (Okundamiya and Nzeako, 2013)          45

Figure 2.9: Map of Nigeria showing the study locations.                                                       101

Figure 3.1: Architecture of the proposed hybrid energy system for electricity supply to    GSM BTS sites                                                                                                                            108

Figure 3.2: Control design of proposed hybrid energy system                                               130

Figure 3.3: Control design of proposed micro-grid (stand-alone HES)                                  132

Figure 3.4: Optimization and operation control model for HES                                            165

Figure 3.5: GA toolbox parameter settings for the simulation model                                     168

Figure 4.1: Simulated minute load profile for an outdoor GSM BTS  (S/4/4/4)  site  in Nigeria. 173

Figure 4.2: The Nigerian grid supply voltage profile simulated for a period of 1 year

  • Voltage magnitude (b) Power access/outage frequency.                              174

Figure 4.3: Comparison of the measured and estimated monthly average daily global solar radiations on a horizontal surface (in the periods of 1984 – 2005) for

(a)   Sokoto,   (b)   Maiduguri,   (c)   Abuja,   (d)   Ikeja,   (e)   Enugu,   and

(f) Benin City respectively                                                                                 177

Figure 4.4: Comparison of  performance  indices  for  various  global  solar  radiation  models: (a) r-value, (b) RMSE, (c) MBE and (d) MABE.                                                                 178

Figure 4.5: Comparison of the monthly relative percentage error (RPE) of global solar radiation  estimates  from                                      (a)  Angstrom–Prescott  (1940),     (b) Badescu (1999), (c) Chen et al. (2004), (d) El-Metwally (2004),  (e)  Falayi  et  al. (2008), and (f) Present study [Eq. (3.22)].                                                                                         179

Figure 4.6: Comparison of the measured  and  estimated  monthly  average  daily  diffuse solar radiations  (1984–2005) for (a) Sokoto, (b) Maiduguri, (c) Abuja, (d)  Ikeja, (e) Enugu, and (f) Benin City respectively                                                                                                 181

Figure 4.7: Comparison of performance  indices  for  various  diffuse  solar  radiation  models:  (a) r-value, (b) RMSE, (c) MBE and (d) MABE.                                                      183

Figure 4.8: A comparison of the monthly relative percentage error (RPE) of diffuse  solar radiation estimates from (a) Page (1964), (b) Liu-Jordan (1960), (c)

Butt et al. (2010), (d) Karakoti et al. (2011), (e) Present study (Eq. 3.23),

and (f) Present study (Eq. 3.24).                                                                        184

Figure 4.9: Comparison of annual total solar irradiance on a horizontal and tilted surface

for various locations in Nigeria                                                                          189

Figure 4.10: A comparison of annual minutely global irradiance at annual optimum tilt angle for (a) Sokoto, (b) Maiduguri, (c) Abuja, (d) Ikeja, (e) Enugu and

(f) Benin City.                                                                                                    190

Figure 4.11: Comparison of the proposed WTG power profile  and  the  manufacturer supplied power characteristics for (a) H3.1-1kW, (b) H3.8-2kW, (c) H4.6-  3kW, and (d) H6.4-5kW WTGs respectively.                                                                                                        193

Figure 4.12: Adjusted minutely wind speed data to the GSM BTS tower height of 25 m for a typical year for (a) Sokoto, (b) Maiduguri, (c) Abuja, (d) Ikeja,

(e) Enugu, and (f) Benin City respectively                                                        194

Figure 4.13: Hourly energy profile for Grid-PV/Wind HES in Sokoto: (a) Total energy generation, (b) Energy drawn from grid, (c) Solar energy generation, and

(d) Wind energy generation.                                                                              199

Figure 4.14: SOC of SC/battery bank of proposed grid-PV/Wind energy system for a simulation period of one year for (a) Sokoto, (b) Maiduguri, (c) Abuja, (d)  Ikeja, (e) Enugu,  and (f) Benin City respectively.                                                                                                200

Figure 4.15: SOC of SC/battery bank of proposed stand-alone PV/Wind energy system for a simulation period of one year for (a) Sokoto, (b) Maiduguri,

  • Abuja, (d) Ikeja, (e) Enugu, and (f) Benin City respectively.                       201

Figure 4.16: Electrical characteristics of proposed stand-alone PV/Wind energy system for a typical day (February 28) for (a) Sokoto, (b) Maiduguri, (c) Abuja,

  • Ikeja, (e) Enugu, and  (f) Benin City respectively.                                       202

Figure 4.17: Electrical characteristics of proposed grid- PV/Wind HES for a typical day (September 21) for (a) Sokoto, (b) Maiduguri, (c) Abuja, (d) Ikeja,

  • Enugu, and  (f) Benin City respectively.                                                      203

Figure 4.18: Comparison of the power supply reliability of proposed hybrid  and  conventional energy systems                                                                                                               215

Figure 4.19: Comparison of the economic performance of  proposed  hybrid  and conventional energy systems                                                                                                               218

Figure 4.20: Comparison of the performance  viability  of  proposed  and  conventional energy systems                                                                                                                            220

Figure 4.21: Variation of energy performance index with power supply reliability for

  • Sokoto, (b) Maiduguri, (c) Abuja, (d) Ikeja,  (e)  Enugu,  and  (f)  Benin City. 225

Figure 4.22: Comparison of the growth in cost saving and population till 2020                    227

LIST OF TABLES

Table 2.1: The main characteristic of the Nigerian grid electricity system (UNDP-GEF, 2013).  24

Table 2.2: Variation of electricity tariff  for  mobile  telecommunication  companies  for study locations (NERC, 2012)                                                                                                      27

Table 2.3: Global Warming Potential (IPCC, 1996)                                                                 30

Table 2.4: Weibull shape and scale factors for study locations in Nigeria (Ahmed et al.,  2013)  35

Table 2.5: Power law exponents for different locations in  Nigeria  (Okundamiya  and Nzeako, 2013)  41

Table 2.6: GHG emission factors for the grid electricity from various sources (Nandi

and Ghosh, 2010; LGOP, 2010)                                                                          80

Table 3.1: Geographical classification and coordinates of selected sites in Nigeria.              154

Table 3.2: Economic specifications of  components  for  optimization  of  the  proposed hybrid energy  system  (Nandi  and  Ghosh,  2010;  AHDC,  2013;  SEDC, 2013; MTI, 2014, Ebay, 2014)                                                                                                                            171

Table 4.1: Calibration results of various global solar radiation models (using group-1

data sets for a period of 22-years) along with R2 and t-stat values                    175

Table 4.2: Validation results of various global solar radiation models using group-2 data

sets for a period of 22-years                                                                               176

Table 4.3: Calibration results of different diffuse solar radiation models (using group-1

data sets for a period of 22-years) along with R2 and t-stat values                    180

Table 4.4: Validation results of different diffuse solar radiation models using group-2

data sets for a period of 22-years                                                                       182

Table 4.5: Result of analysis (based on HDKR model) of influence  of  annual-based optimum tilt angles for selected areas in Nigeria                                                                               185

Table 4.6: Result of analysis (based on HDKR model) of influence of seasonal-based optimum tilt angles for selected locations in Nigeria                                                                         186

Table 4.7: Result of analysis (based on HDKR model) of influence of monthly-based optimum tilt angles for selected locations in Nigeria                                                                         187

Table 4.8: Comparison of different optimization methods  (using  HDKR  model)  for tracking solar radiations in Nigeria                                                                                           188

Table    4.9:    Calibration    results    of   proposed    WTG    model    [Eq.    (3.19)]    using manufacturer‘s supplied data.                                                                            191

Table 4.10: Validation results for proposed WTG model                                                       192

Table 4.11: Simulation results for proposed Grid-PV/Wind hybrid energy system for considered locations                                                                                                                            195

Table 4.12: Simulation results for proposed stand-alone PV/wind hybrid energy system

for studied locations                                                                                           196

Table 4.13: The annual total energy composition of the developed Grid-PV/Wind HES      197

Table 4.14: The annual total energy composition of the developed stand-alone PV/Wind  HES 198

Table 4.15: Comparison of Energy Composition of Grid-PV/Wind HES by fraction for different sites                                                                                                                            216

Table 4.16: Comparison of Energy  Composition  of  stand-alone  PV/Wind  HES  by  fraction for different sites                                                                                                     216

Table 4.17: Comparison of the costs of energy (COE) of various energy systems                 217

Table 4.18: Comparison of proposed system techno-economic viability  for  various reliability limits                                                                                                                            222

Table 4.19: Comparison of environmental impact of conventional and proposed energy systems                                                                                                                            228

NOMENCLATURES

∆TTemperature difference (oC)
  A  Area (m2)
apm  Maximum coefficient of rated performance
apr  Coefficient of performance at rated wind speed
  BTemperature lapse rate (K m-1)
  bi  Model parameters/regression coefficients
Cˆ  Monthly average daily total Cloud cover during daytime observations (octa)
cPresent cost penalty per unit size (N unit-size-1)
  cj  Present cost of component per unit size (N unit-size-1)
  ccjCost coefficient of component per unit size (N unit-size-1)
CO2eq  Carbon footprint (t)
  D, G  Coefficients
  E  Total energy (kWh yr-1)
  (τ)  Energy at time τ (kWh)
  ef,  Emission factors (g kWh-1)

em,             Emission (t)

fm  

~               Modulating function

  • Gravitational acceleration (m s-2)

H               Monthly average daily global radiation on a horizontal surface (kWh m-2 day-1)

  • Hour (h)

Hc              Monthly average clear  sky  daily  global  radiation  on  a  horizontal  surface (kWh m-2 day-1)

HD             Monthly     average     daily     diffuse     radiation     on     a     horizontal     surface (kWh m-2 day-1)

Ho              Monthly   average    daily    extraterrestrial    radiation   on    a    horizontal    surface (kWh m-2 day-1)

I                 Average hourly global solar radiation on a horizontal surface (kW m-2)

I0                Hourly extraterrestrial radiation on a horizontal surface (kW m-2)

Ib                Average hourly beam solar radiation on a horizontal surface (kW m-2Id                  Average hourly diffuse solar radiation on a horizontal surface (kW m-2It     Hourly global irradiance incident on a tilted surface (kW m-2)

k                Shape factor

¢              Monthly average daily diffuse coefficient

KDMonthly average daily diffuse fraction
KT  Monthly average daily clear index
  L  Lifetime (yr)
  l  Scale factor (m s-1)
  m  Months of the year
  min  Minutes
  N  Number
  nf  Noise factor
ns  Outcomes of supply
ol  Moving average function at lag l
  P  Power (kW)
  pdf  Probability density functions
  Ps  Pressure (Pa)
  Py  Probability
  Q  Quantity
  r  Coefficient of correlation
  R  Gas Constant (J kg-1 K-1)

R2              Coefficient of determination

rd ȓe Rg¢Self-discharge rate (% day-1) Escalation rate Geometric ratio
  RH  Monthly average daily relative humidity (%)
  ȓi  Interest rate
ȓf  Inflation rate
  S  Monthly average sunshine duration (h)
  So  Monthly average daylight sunshine duration (h)
  Sz  Size
  T  Air temperature (oC)
  T*  Absolute temperature (K)
  tcp  Temperature coefficient of power (% 0-1)
  t-stat  T-statistic test
  uh  Coefficient of heat transfer/loss to surroundings (kW m-2 °C -1)
ul  Autocorrelation function at lag l
  vWind speed (m s-1)

v                Standardized wind speed (m s-1)

V                Voltage (V)

Xp              Expectation

yr               Year

z                 Altitude (m)

   

B

Matrix

Greek letters

µ                Average

ħf               Horizon brightening factor

ƛi                Anisotropy index

α                Solar absorbance

β                Surface inclination or tilt angle (o)

γ                Azimuth or surface orientation (o)

δ                Solar declination (o)

ε                Noise function

η                Efficiency

θz               Zenith angle of incidence (o)

λ                Power law exponent

ξ                Solar transmittance of any cover over the PV array

ρ                Air density (kg m-3)

ρg               Ground reflectance or Albedo

σ                Standard deviation

σ2               Variance

τ                 Simulation time (s)

ϕ                Latitude (o)

ψη              Wavelet function

ω               Hour angle (o)

ωs              Sunset Hour Angle (o)

Subscripts

ac              Alternating current

ah              Anemometer height

ann            Annual

ave             Average

bat             Battery

bbBattery bank
  bf  Battery float-life
  cf  Coupling factor
  ci  Cut-in
  cl  Cell
  co  Cut-out
  con  Converter
  cr  Critical
  d  Demand
  dc  Direct current
  def  Deficit
  ec  Economic
  en  Environmental
  es  Energy storage
  exc  Excess
  fc  Fixed charge
  ga  Grid access
gcGrid consumption
  ge  Grid electricity
  gec  Grid energy contribution
  grd  Grid
  gs  Grid supply
  hh  Hub height
  hor  Horizontal
  hs  Hybrid system supply
  ic  Input of converter
  inc  Inclination
  ini  Initial
  int  Interconnection
  inv  Inverter
  lt  Lifetime
  max  Maximum
  mea  Measured
  min  Minimum
moMode of operation
  mod  PV Module
  mp  Maximum power
  norm  Normalized
  op  Operation
  out  Output
  p  Power
  pk  Peak
  pred  Predicted
  R  Ratio/Relative
  rat  Rated
  re  Renewable energy
  rec  Renewable energy contribution
  rel  Reliability
  rep  Replacement
  ret  Rectifier
  sal  Salvage
scSC bank
  se  Solar energy
  sg  Solar generation
  sta  Stabilizer
  STC  Standard Test Conditions
  sv  Salvage value
  sys  System
  te  Technical
  tec  Total energy contribution
  tp  Throughput
  un  Unmet
  we  Wind energy
  wec  Wind energy contribution
  wg  Wind generation
  wt  Wind turbine
Acronyms 
  3G  Third Generations
  AC  Alternate Current
  ACO  Ant Colony Optimization
  ANN  Artificial Neural Network
  AR  Autoregressive
  ARMA  Autoregressive Moving Average
  BTS  Base Transceiver Station
  CER  Commission for Energy Regulation
  COE  Costs of Energy
  COI  Cost of Investment
  CRF  Capital Recovery Factor
  D  Decision variable
  DC  Direct Current
  DE  Differential Evolution
  DML  Digital Mobile Licenses
  DOD  Depth of Discharge

ECN           Energy Commission of Nigeria

EPSR        Electricity Power Sector Reform

erf              Error function

ES             Energy Storage