Conceptual Bases of Robot Navigation Modeling, Control and Applications

0
401

The advancements of the research on Mobile Robots with high degree of autonomy is possible, on one hand, due to its broad perspective of applications and, on other hand, due to the development and reduction of costs on computer, electronic and mechanic systems. Together with the research in Artificial Intelligence and Cognitive Science, this scenario currently enables the proposition of ambitious and complex robotic projects. Most of the applications were developed outside the structured environment of industry assembly lines and have complex goals, such as planets exploration, transportation of parts in factories, manufacturing, cleaning and monitoring of households, handling of radioactive materials in nuclear power plants, inspection of volcanoes, and many other activities. This chapter presents and discusses the main topics involved on the design or adoption of a mobile robot system and focus on the control and navigation systems for autonomous mobile robots. Thus, this chapter is organized as follows: • The Section 2 introduces the main aspects of the Robot design, such as: the conceptualization of the mobile robot physical structure and its relation to the world; the state of art of navigation methods and systems; and the control architectures which enables high degree of autonomy. • The Section 3 presents the dynamic and control analysis for navigation robots with kinematic and dynamic model of the differential and omnidirectional robots. • And finally, Section 4 presents applications for a robotic platform of Automation, Simulation, Control and Supervision of Navegation Robots, with studies of dynamic and kinematic modeling, control algorithms, mechanisms for mapping and localization, trajectory planning and the platform simulator.